
Using HL7 and the World Wide Web for Unifying Patient Data from Remote
Databases

drs. F.J. van Wingerde1, Jiri Schindler2, Peter Kilbrid e M.D.3, Peter Szolovits Ph.D.2,
Charles Safran, M.D., M.S.4, David Rind M.D., M.S. , Shawn Murphy, M.D., Ph.D.3,

G. Octo Barnett, M.D.3, Isaac S. Kohane M.D. Ph.D.'
'Children's Hospital Informatics Project, Children's Hospital, Boston, MA

2Clinical Decision Making Group, Massachusetts Institute of Technology, Cambridge, MA
3Division of Clinical Computing, Beth Israel Hospital, Boston, MA

4Laboratory of Computer Science, Massachusetts General Hospital, Boston, MA

W3-EMRS is an architecture designed to access clini-
cal data from remote heterogeneous electronic medi-
cal record system (EMRS) databases. We describe the
technologies used in an experimental implementation
ofW3-EMRS that concurrently collects datafrom sev-
eral sources and presents them in an integrated set of
views. After describing some of the organizational
constraints, the architectural decisions, implementa-
tion methodology, and operation of the completed
project are discussed.

INTRODUCTION

We have previously described' a demonstration
project in which a single EMRS database at Children's
Hospital, "scrubbed" to remove patient and provider
identifiers, could be accessed over the World Wide
Web (W3). The functionality delivered by the original
prototype led to its re-implementation, running against
the entire Children's Hospital Integrated Hospital
Information System2. Access to this implementation is
restricted to the hospital's "intranet", within its "fire-
wall." Like other W3 based EMRS (W3BE) imple-
mentations3'4, these early prototypes were limited to
providing access to a single EMRS database because
several functions of these W3BE depend on properties
particular to the underlying EMRS (the "legacy"
EMRS), particularly the legacy EMRS's information
model. The W3-EMRS architecture provides indepen-
dence from the specifics of any particular legacy
EMRS by creating several abstractions, a set of data
structures and functions common to multiple legacy
EMRS. These abstractions include 1) a Common
Medical Record (CMR) which describes the informa-
tion model, vocabularies and transactions common to
multiple legacy EMRS 2) a Visual Presentation layer
which describes the layout of data elements (e.g. a
time-ordered list for patient medications) in the CMR
and responses to user interactions (e.g. selection of a
medication) 3) a Screen Rendering layer which imple-
ments the Visual Presentation in a particular user
interface technology (e.g. W3, Visual Basic, Delphi).
Details of the W3-EMRS architecture can be found in
Kohane et al.2.

This paper describes an implementation of the W3-
EMRS architecture, designed to deliver an integrated
view of the patient record from multiple legacy
EMRS, for the purpose of initial evaluation and treat-
ment of a patient in an Emergency Department (E. D.).
The data for this feasability study came from three
scrubbed databases of patient data, and all connections
between separate computers for the purpose of data-
sharing were made inside the lcs.mit.edu domain. We
emphasize how this implementation was informed and
constrained by the lessons learned in implementing
the first W3BE prototypes and by the necessity to
adhere to industry standards.

One of the consequences of implementing a multi-
institutional W3-EMRS architecture was that several
important issues related to sharing data between heter-
ogenous legacy EMRS were encountered. These
include the absence of well-accepted standard vocabu-
laries, heterogenous confidentiality policies and tech-
nologies, the lack of master patient indices, and
disparate semantics even for identical terms. These
issues are beyond the scope of this paper and are
addressed in another paper in these proceedings 5.

DESIGN CONSTRAINTS

The design constraints for data sharing in this project
were significantly influenced by the nature of the Bos-
ton EMR Collaborative. The hospital-based EMRS, at
Children's Hospital6, the Massachusetts General Hos-
pital7, and the Beth Israel Hospital8, all have different
information models, styles of clinical documentation,
medical record numbering systems and vocabularies
(e.g. for problem lists). Further, concerns of patient
privacy, intellectual property, and potentially
increased computational burden imposed on the leg-
acy EMRS dictated that unrestricted, direct querying
of any of the legacy EMRS database was to be ruled
out. Each legacy EMRS would have to be able to con-
trol how it responded to queries external to the EMRS.
Finally, to allay concerns of all parties in this experi-
mental phase, we have only used test databases from
each hospital, processed to remove all identifying

0195-4210/96/$5.00 C 1996 AMIA, Inc. 643

information with subsequent manual review by two
teams. These test databases do not reside within the
hospitals and do not therefore threaten the confidenti-
ality of any of the patients in the "production" data-
bases.

The task domain for the first experimental prototype
of the W3-EMRS architecture for the Boston EMR
Collaborative was defined as providing clinical infor-
mation for the management of the patient arriving in
the Emergency Department of any of the hospitals of
the Collaborative. This domain was felt to be more
compelling motivation for the use of high-speed net-
works than less acute multi-institutional scenarios,
such as a referral to a specialist for a second opinion
which might be equally well served by other technolo-
gies. The selection of a well-defilned task domain also
had the effect of limiting the breadth of data modeling
and consensus building to the minimum required to
meet the specified task.

Use of Standards
The first project taught us that the W3 is a viable
medium for transporting medical data. It also showed
us in a compelling way that adhering to standards and
using off-the shelf components as much as possible,
resulted in substantial gains in time between concep-
tion and release: coding the first instance of that
project took all of fourteen days.

Since accessing multiple databases would make this
project more complex, it seemed logical to again
adhere to standards and use off-the-shelf components
as much as possible to manage the increase in com-
plexity.

Consistent Interface
If all participating sites would deliver their data in dif-
ferent electronic documents, it would be difficult for
the user to piece together the full medical history of a
patient that had data spread over several sites. There
was also the possibility that every site would create a
different interface to their medical records, thus
increasing complexity for the user as the user would
have to learn how to interact with every site to retrieve
the desired data. Furthermore, the user would have to
remember where to find the points of access for every
site.

To make the system easier to use, the decision was
made that the data would be retrievable from one sin-
gle point of access. It also would be made possible,
once the user had selected the relevant patient, to
present the data on that patient as one single unified
electronic document, no matter which site the data
came from.

Jser with W3 browser

r-T ; itSes with data

Figure 1 - Overview of the architecture

INSTANTIATION OF ARCHITECTURE

To satisfy the above conditions, an architecture was
created, consisting of three elements. The three ele-
ments roughly correspond to the three tiers of W3-
EMRS abstraction.

W3 Browser
The first module in this architecture is the user with a
browser capable of connecting to and viewing data on
the W3. It is assumed that the user is working on
equipment adequate for viewing large amounts of
medical data (i.e. a high-resolution color monitor of 17
inches or more attached to CPU capable of running
Netscape 2.0 or an equivalent browser). We felt these
requirements were not unreasonable as Netscape
browsers comprise a significant part of the market for
all the major platforms and hardly any desktop com-
puters are sold anymore without color capabilities.
This corresponds to the Screen Rendering Layer of
W3-EMRS.

The Agglutinator
The program that mediates between the multiple
EMRS sites and the user with a W3 client is called the
Agglutinator. This program collects clinical data from
multiple sites, formats these data in a data-type spe-
cific manner, generates the corresponding HTML, and
returns the output to the user connected to the Agglu-
tinator. To collect the medical data from various sites,
the Agglutinator uses the same infrastructure as used
to connect to it: W3 protocols over the Internet. The
Agglutinator is capable of connecting through the W3
with several dedicated programs ("Site Servers") at
participating EMRS sites, in order to collect data from

644

|
_.

those sites. One or more Agglutinators can run at dif-
ferent sites to manage different user loads and network
configurations. In the current experiment, we only use
one. The Agglutinator corresponds to the Visual Pre-
sentation layer of the W3-EMRS architecture as it
converts a set of message streams from the various
EMRS sites into a defined presentation format.

In order to serve data back to the browsers as quickly
as possible, the choice was made to have the Aggluti-
nator run continually. This saves the time used for
internal initialization if the Agglutinator would have
to be started separately up for each request.

The connection between the W3 server and the Agglu-
tinator is a small gatekeeper program that the server
starts up when a client requests a connection to the
Agglutinator. The gatekeeper tries to make a connec-
tion to the Agglutinator with a standard TCP call to the
Central Access Point (CAP), a TCP socket, of the
Agglutinator. When such a request comes in, the
Agglutinator will open a specialized communications
channel to the gatekeeper and then clone itself (a so-
called 'fork'), a duplication that does not involve sig-
nificant overhead and maintains all communications
and internal structures in both Agglutinators. The
spawned clone, the child, can then take care of the
request and return the results to the gatekeeper over
the specialized channel, while the parent is free to
serve the next request.

When the Agglutinator is started up, it reads in a con-
figuration file that contains a list of all participating
site servers, and puts them in an internal list. It also
constructs a generic HL7 query in which certain slots
have been left open for the details of the query.

The Agglutinator-clone fills in the rest of the query
with the details as received from the user, and sends it
over a W3 connection to the sites in its internal list of
sites. The internal structure of the Agglutinator allows
for restrictions on which site servers should be con-
tacted, so as to not waste resources if it is known that
information can be found at specific sites. After send-
ing, it will then poll the contacted sites every second
until all sites have returned a response or until a cer-
tain time-out value has been exceeded, currently set at
20 seconds. The Agglutinator will then decode each
response for information and build an HTML page
from the responses, which it will then send to the gate-
keeper over the specialized channel. The gatekeeper
can then pass the page on to the Web server for trans-
port to the browser that issued the first request.

This design allows for an Agglutinator that is almost
continually accessible but can still handle multiple
queries concurrently by spawning copies to each take
care of every request.

.r

AQg~

4
a;,:

I.

C

Step 1
TheWS srver startspa

G (l) whiohin
m cntat theAg r
Agg thmugh the CAEP (2). The
Agglutinator racts by open-
inga c channel
with the gtekoee (3),. send
ing the adress oftbetchannl
back to tle gatee Dover
fte AP (4).
Step 2
The Agglutinator clones
itself. Both the original and
the copy CAfstng tob:the
CAP and are conneced o'ver
the same chtdmel to the gate-
keeper.

step 3
The origina closes the chan-
nel to thegatekeeper. It is
now reidy for a new request
overtheCAP. Te copy stops
listening to the CAP, serves
the request, an redtur the
results to the gatekeeper over
thde channel

Full oeraon
In thi;s way, the Agglti nator
system can seve multiple
requests from theW3 clients
to this W3smerver through its
clones, while the original is
always ready for the next
request that comes over the
CAP.

Figure 2 - Agglutinator responding to query

The Agglutinator is coded as a C++ program. It is built
from objects from the lowest level up; the connections
to the site servers, the requests, the returned data, the
HTML page and the elements within it are all inter-
nally represented as C++ objects. This allows for easy
exploitation of the similarities between the different
types of medical data (allergies, problems, demo-
graphics, etc.) and a decomposable inner architecture
for easier creation and maintenance.

At the time of writing, there were no C++ libraries
implementing HTML available to us, so we wrote our
own. The HTML library contains an abstract class
HT,_Element from which all elements of an HTML
page are eventually derived.The library contains some
general objects like tagged element (of the format
<TAG[arguments]>DATA</TAG>) and list tagged ele-
ment (of the format

645

....~

<TAG[arguments]>List of DATA</TAG>) as well as
derived specific objects like Anchor and Image. In all
cases, DATA can be text or other HTM_Elements,
allowing for nesting of objects as is possible in an
HTML page.

Objects from this library are instantiated with medical
data from the site servers and are then put into a page
object. When this is page is then printed, the objects
within it typeset the appropriate tags and values for
themselves within the whole page, creating a full
HTML page.

The Site Servers
The third element of this W3-EMRS implementation
consists of the site-servers. These are programs run-
ning on computers connected to the W3. They serve as
gateways to the electronic medical record systems
placed and maintained at each site. The site servers
exist to service requests from the Agglutinator by
examining the requests, querying their databases and
returning the requested data. The content of the data
set is the Common Medical Record (CMR), the con-
sensus information model of the Boston EMR Collab-
orative. The site servers and the Agglutinator package
their request and responses using an industry standard
communications protocol, Health Level Seven
(HL7)9. That is, each CMR data element is given an
unambiguous representation in the HL7 message so
that the Agglutinator can consistently and accurately
decode the messages from each site. Where HL7 does
not support a CMR data type, we have used the stan-
dard HL7 extension mechanisms. Where HL7 allows
for more data than defined in the information model,
we have tried to fill that information into the HL7
message if available at the site, as we deemed more
information more desirable over less. The precise
specification of the CMR content of the HL7 message
stream returned by the site servers and the HL7 query
that the site servers respond to constitute the Common
Medical Record abstraction of the W3-EMRS archi-
tecture.

For this feasibility study, three site servers were
implemented using databases extracted from the three
hospital EMRS and scrubbed to remove identifying
data. Two databases were loaded into Oracle 7 rela-
tional database management systems located at MIT,
coded in the language C with additional Oracle librar-
ies to interface the program with the database and
allow electronic access to the data. One database and
its site server were implemented on a Forte client/
server system at MGH. The W3 server at the sites
starts up the site server when a query is sent to it, and
feeds the query to the site server over standard input.
The site server, after processing the query and fetching
the relevant data, can then simply put the HL7 mes-
sage on standard output for the W3 server to pick it up

and send back to where the original request came
from.

Security Technologies
Medical records are generally sensitive and need to be
handled in a way that does not allow them to be
accessed by those not so authorized, at any time,
including when being transported over W3. This and
concerns over patient autonomy, and patient control
over the release of information led the Boston EMR
Collaborative to invest significant effort in defining a
common set of policies, and procedures to secure
appropriate patient, provider, and institutional authen-
tication, and patient consent. The description here is
limited to the security technologies that we have
already implemented.

Currently there are two competing ways to handle
secure W3 transactions. The first is an implementation
from Netscape Inc. called Secure Socket Layer
(SSL)10, which is an additional network layer put on
top of TCP. The second is a protocol called secure
HTTP (SHTTP)l1. SHTIP negotiates the level of
security as well as the optional authentication scheme
before the actual transmission of data.

Although SSL is already built into Netscape's browser
while SHTTP is still in development, we believe that
the latter is better suited for our purposes for various
reasons. Unlike SSL, SHTTP is completely abstracted
from the network layer and is therefore independent of
implementation. The ability to negotiate different
authentication and encryption algorithms is very use-
ful in a heterogeneous environment of differing hospi-
tal information system with varying security levels
and encryption algorithms. It also can be used to selec-
tively limit access to different parts of the medical
record, allowing access to more sensitive data only at
higher levels of authentication and encryption.

DISCUSSION

The Agglutinator is now up and running on a Sun
SPARCStation 10 with Solaris 2.5. All of the defined
datatypes are being transferred from the site servers
through the Agglutinator into HTML documents upon
request. The system is technically sound in that all the
connections are made and data transfer is sustained in
a predictable and orderly manner. The three tier archi-
tecture clearly works in our laboratory.

One of the problems noticed was that it was very hard
to get an overview of the data available at a site with-
out retrieving the data in full. This is a function of the
HL7 dialog that we used; there were no slots or defini-
tions for sending overviews of the data within the pro-
tocol. For example, to know who wrote the notes of a
patient, it is necessary to retrieve all the notes in full,

646

which results in a lot of data being transferred that
may not be of interest to the user.
Another problem with this architecture is the stateless-
ness of all the elements in it, a problem that appears in
many forms. First of all, the HL7 protocol defines a
sequencing protocol for the messages: every message
has a number and the protocol states how the number
of a message between the Agglutinator and a certain
site server is supposed to be assigned based on the pre-
vious message. The site servers run once for each
query and then terminates. Consequently, they do not
know what the previous message-number of a mes-
sage to their site was. That number could be recorded
at several locations but as other developers ofW3 sys-
tems have noted, overcoming the statelessness of these
systems is awkward at best and was not attempted in
the current implementation.

The Agglutinator doesn't record any of the data it
receives; after passing data to the browser, it exits and
releases all used memory. This means that if a user
requests to view the data again, a whole new query has
to be created, submitted and returned for data that has
already once been retrieved. In the current implemen-
tation, we did not attempt to implement any caching
schemes to overcome this performance limitation.

FUTURE DIRECTIONS

Remote Servers
Two of the three site servers constructed are physi-
cally and virtually very close to the Agglutinator. The
test-system has now run smoothly for months with
those servers on a separate machine from the Aggluti-
nator, but both machines were inside the same domain.
We would like to test the architecture in a more realis-
tic situation of having all site servers outside our
domain, created and maintained by our collaborating
partners, accessing their data from various databases.

New Internals
The Agglutinator is now one big monolithic applica-
tion - decoding requests, handling HL7 dialogues and
creating HTML pages are all handled in the same pro-
cess space. While this construction has served us well,
new features that we are examining are forcing us to
redesign the Agglutinator. This will probably result in
a decomposition of the Agglutinator into more easily
manageable executables, each written in a language
optimized to their task. The core of this new architec-
ture may be a database so as to keep state inside the
Agglutinator and allowing for some caching of fre-
quently queries or recently requested data.

Acknowledgments

This research was supported by the National Library

of Medicine (UOI LM05877-01, LM05854, LM4-
3512), the Agency for Health Care Policy and
Research (HS 08749), and in part by t Sun Microsys-
tems and Oracle Corporation.

References

1. Kohane I, Greenspun P, Fackler J, Cimino C,
Szolovits P. W3-EMRS: Access to Multi-Institu-
tional Electronic Medical Records via with World
Wide Web. Hripsak G, ed. Spring Congress ofthe
American Medical Informatics Association. Bos-
ton, MA, 1995.

2. Kohane IS, Greenspun P, Fackler J, Cimino C,
Szolovits P. Building National Electronic Medical
Record Systems via the World Wide Web. JAMIA
1996;3(3): 191-207.

3. Willard KE, Hallgren JH, Sielaff B, Connelly DP.
The deployment of a World Wide Web (W3) based
medical information system.Gardner RM, ed.
Symposium on Computer Applications in Medical
Care. New Orleans, Louisiana: Hanley & Belfus,
Inc, 1995:771-775.

4. Cimino JJ, Socratous SA, Grewal R. The informat-
ics superhighway: Prototyping on the World Wide
Web. Gardner RM, ed. Symposium on Computer
Applications in Medical Care. New Orleans, Loui-
siana: Hanley & Belfus, Inc, 1995:111-115.

5. Kohane IS, Wingerde FJv, Cimino C, et al. Shar-
ing Electronic Medical Records Across Multiple
Heterogeneous and Competing Institutions.
Cimino J, ed. Submitted to Proceedings of the
Symposiumfor Computer Applications in Medical
Care. Washington, DC: Hanley & Belfus, Inc.,
1996.

6. Kohane IS. Getting the Data In: Three-Year Expe-
rience with a Pediatric Electronic Medical Record
System. Ozbolt JG, ed. Proceedings, Symposium
on ComputerApplications in Medical Care. Wash-
ington, DC: Hanley & Belfus, Inc, 1994:457-461.

7. Barnett GO. Computer-stored ambulatory record
(COSTAR). DHEW, 1976:

8. Bleich H, Beckley R, Horwitz G, et al. Clinical
computing in a teaching hospital. New England
Journal ofMedicine 1985;312:756-764.

9. Health Level Seven: An application protocol for
electronic data exchange in healthcare environ-
ments; Version 2.2. Chicago, Illinois: Health
Level Seven, 1990.

10. Hickman KEB, Elgamal T. The SSL Protocol.
Internet Draft. Netscape Communications Corpo-
ration, 1995:

11. Rescorla E, Schiffinan A. The Secure Hypertext
Transfer Protocol. Internet Draft. Enterprise Inte-
gration Technologies, 1994:

647

